|
|||||
电感电感的概念电感是闭合回路的一种属性,是一个物理量。当线圈通过电流后,在线圈中形成磁场感应,感应磁场又会产生感应电流来抵制通过线圈中的电流。这种电流与线圈的相互作用关系称为电的感抗,也就是电感,以美国科学家约瑟夫·亨利命名。 电感是描述由于线圈电流变化,在本线圈中或在另一线圈中引起感应电动势效应的电路参数。电感是自感和互感的总称。提供电感的器件称为电感器。 电感用L表示,单位有亨利(H)、毫亨利 (mH)、微亨利(μH),1H=10^3mH=10^6μH。高中物理对电感不做计算要求。 自感与互感(1)自感 当线圈中有电流通过时,线圈的周围就会产生磁场。当线圈中电流发生变化时,其周围的磁场也产生相应的变化,此变化的磁场可使线圈自身产生感应电动势(感生电动势)(电动势用以表示有源元件理想电源的端电压),这就是自感。 (2)互感 两个电感线圈相互靠近时,一个电感线圈的磁场变化将影响另一个电感线圈,这种影响就是互感。互感的大小取决于电感线圈的自感与两个电感线圈耦合的程度,利用此原理制成的元件叫做互感器。 电感常见物理考题分析举例一般地,我们认为电流稳态时电感L的电阻很小,电流突然改变时电感表现出很强的阻抗性。 甲图情况分析 当甲图中电键突然闭合时,通过R的支路很快就有一个稳定的电流,因为L的作用,通过灯泡的电流是缓慢增加的;达到稳定态,维持某个电流数值保持不变。 灯泡的亮度是慢慢变亮的。 当甲图中电键突然断开,因为L的作用,形成一个以L为电源,L、灯泡、R串联的回路,通过灯泡的电流是缓慢减小的,直到最终熄灭。 灯泡的亮度是慢慢减弱的。 乙图情况分析 当乙图中电键突然闭合时,通过R与灯泡的支路,很快就有一个稳定的电流,通过L的电流是缓慢增加的,不过达到稳态时,L中的电流要比另外支路大。 灯泡的亮度是突然变亮的。 当乙图中电键突然断开,因为L的作用,形成一个以L为电源,L、灯泡、R串联的回路,通过灯泡的电流是缓慢减小的,直到最终熄灭; 相比于甲图,起始的电流更大些,因此电灯泡是先闪亮一下,而后逐步减弱的。 电感线圈电感线圈是利用电磁感应的原理进行工作的器件。线圈是由导线一圈靠一圈地绕在绝缘管上,导线彼此互相绝缘,而绝缘管可以是空心的,也可以包含铁芯或磁粉芯。 当有电流流过一根导线时,就会在这根导线的周围产生一定的电磁场,而这个电磁场的导线本身又会对处在这个电磁场范围内的导线发生感应作用。对产生电磁场的导线本身发生的作用,叫做“自感“,即导线自己产生的变化电流产生变化磁场,这个磁场又进一步影响了导线中的电流;对处在这个电磁场范围的其他导线产生的作用,叫做“互感“。 电感线圈的电特性和电容器相反,“通低频,阻高频“。 高频信号通过电感线圈时会遇到很大的阻力,很难通过;而对低频信号通过它时所呈现的阻力则比较小,即低频信号可以较容易的通过它。电感线圈对直流电的电阻几乎为零。 电阻,电容和电感,他们对于电路中电信号的流动都会呈现一定的阻力,这种阻力我们称之为“阻抗”。电感线圈对电流信号所呈现的阻抗利用的是线圈的自感。电感线圈有时我们把它简称为“电感”或“线圈”,用字母“L”表示。 绕制电感线圈时,所绕的线圈的圈数我们一般把它称为线圈的“匝数“。 电感线圈与楞次定律楞次是在综合法拉第电磁感应原理(发电机原理)和安培力原理的基础上,以“电动机发电机原理”的形式提出这个定律的。 其基本思想是:用电动机原理代替发电机原理来确定感应电流的方向,即:导线回路在磁场中运动时,产生感应电流(即发电机的电流)的方向,与通电导体回路在磁场力作用下作相同运动时、应通过的电流(电动机电流)的方向相反.以两个端面互相平行的线圈为例,使A 线圈固定,B 线圈可移动.若令A线圈通以电流,让B线圈向A运动,则B线圈上将产生感应电流。用“电动机发电机原理”判断此感应电流的方向的程序如下:假定B作为电动机线圈,通电后受A线圈电流磁场的作用力而向着A运动(电动机),根据安培力规律(或电动机原理),要求B线圈的电流应与A线圈的电流有相同的绕行方向。于是,根据楞次的“电动机发电机原理”所求B线圈上的感应电流的绕行方向与A线圈上电流的绕行方向相反。 楞次定律的表述可归结为:“感应电流的效果总是阻碍引起它的原因。”如果回路上的感应电流是由穿过该回路的磁通量的变化引起的,那么楞次定律可具体表述为:“感应电流在回路中产生的磁通总是反抗(或阻碍)原磁通量的变化。” 在高中物理利用楞次定律解题,我们可以用十二个字来形象记忆:“增反减同,来拒去留,增缩减扩”。 如果感应电流是由组成回路的导体作切割磁感线运动而产生的,那么楞次定律可具体表述为:“运动导体上的感应电流受的磁场力(安培力)总是反抗(或阻碍)导体的运动。”我们不妨称这个表述为力表述,这里感应电流的“效果”是受到磁场力;而产生感应电流的“原因”是导体作切割磁感线的运动。 从楞次定律的上述表述可见,楞次定律并没有直接指出感应电流的方向,它只是概括了确定感应电流方向的原则,给出了确定感应电流的程序。 要真正掌握它,必须要求对表述的涵义有正确的理解,并熟练掌握电流的磁场及电流在磁场中受力的规律。 以“通量表述”为例,要点是感应电流的磁通量反抗引起感应电流的原磁通量的变化,而不是反抗原磁通量。如果原磁通量是增加的,那么感应电流的磁通要反抗原磁通量的增加,就一定与原磁通量的方向相反;如果原磁通减少,那么感应电流的磁通要反抗原磁通的减少,就一定与原磁通量的方向相同。在正确领会定律的上述涵义以后,就可按以下程序应用楞次定律判断感应电流的方向: a.穿过回路的原磁通的方向,以及它是增加还是减少; b.根据楞次定律表述的上述涵义确定回路中感应电流在该回路中产生的磁通的方向; c.根据回路电流在回路内部产生磁场的方向的规律(右手螺旋法则),由感应电流的磁通的方向确定感应电流的方向。 LC振荡回路LC振荡回路的周期公式: 电感与电容串在一起,便构成了LC振荡电路。 LC振荡电路用于产生高频正弦波信号,常见的LC正弦波振荡电路有变压器反馈式LC振荡电路、电感三点式LC振荡电路和电容三点式LC振荡电路。 LC振荡电路的辐射功率是和振荡频率的四次方成正比的,要让LC振荡电路向外辐射足够强的电磁波,必须提高振荡频率,并且使电路具有开放的形式。 LC振荡电路运用了电容跟电感的储能特性,让电磁两种能量交替转化,也就是说电能跟磁能都会有一个最大最小值,也就有了振荡。不过这只是理想情况,实际上所有电子元件都会有损耗,能量在电容跟电感之间互相转化的过程中要么被损耗,要么泄漏出外部,能量会不断减小,所以实际上的LC振荡电路都需要一个放大元件,要么是三极管,要么是集成运放等数电IC,利用这个放大元件,通过各种信号反馈方法使得这个不断被消耗的振荡信号被反馈放大,从而最终输出一个幅值跟频率比较稳定的信号。
参考文献 磁通量http://gaozhongwuli.com/zongjie/kaodian/480416.html 楞次定律http://gaozhongwuli.com/zongjie/kaodian/474096.html 归档日期:2015-12-24 版权归属:高中物理网 http://gaozhongwuli.com/ 扫码关注王尚老师微信公众号teacherws,免费获取物理教学视频资料。 收藏这篇文章到:
高中物理知识体系图
力学
牛顿动力学
受力分析
重力
弹力
摩擦力
运动学
匀变直线
平抛运动
圆周运动
能量与动量
机械能守恒定律
动能定理
能量守恒定律
动量守恒定律
动量定理
电磁
电学
静电场
库伦定律
电场强度
电势能
恒定电路
闭合欧姆定律
电学典型实验
磁学
磁场
安培力
洛伦兹力
左右手定则
电磁感应
磁场强度
法拉第定律
E=Blv
楞次定律
|
|||||
学霸之道:勤于思考,善于总结,重视积累。© 2001 gaozhongwuli.com 高中物理网 |